The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm

نویسندگان

  • V Mermall
  • K G Miller
چکیده

The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three-dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An MBoC Favorite: Class VI unconventional myosin is required for spermatogenesis in Drosophila

We have identified partial loss of function mutations in class VI unconventional myosin, 95F myosin, which results in male sterility. During spermatogenesis the germ line precursor cells undergo mitosis and meiosis to form a bundle of 64 spermatids. The spermatids remain interconnected by cytoplasmic bridges until individualization. The process of individualization involves the formation of a c...

متن کامل

Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila.

Cellularization of the Drosophila embryo requires the establishment of a hexagonal network of actin and myosin filaments that are interconnected around the nuclei in the cortex of the syncytial blastoderm. This cytoskeletal network provides the framework and possibly the contractile force for the membrane invaginations that synchronously subdivide the syncytial embryo into individual cells. Zyg...

متن کامل

An unconventional myosin heavy chain gene from Drosophila melanogaster

As part of a study of cytoskeletal proteins involved in Drosophila embryonic development, we have undertaken the molecular analysis of a 140-kD ATP-sensitive actin-binding protein (Miller, K. G., C. M. Field, and B. M. Alberts. 1989. J. Cell Biol. 109:2963-2975). Analysis of cDNA clones encoding this protein revealed that it represents a new class of unconventional myosin heavy chains. The amin...

متن کامل

A targeted gene silencing technique shows that Drosophila myosin VI is required for egg chamber and imaginal disc morphogenesis.

We report that Drosophila unconventional myosin VI, encoded by Myosin heavy chain at 95F (Mhc95F), is required for both imaginal disc and egg chamber morphogenesis. During oogenesis, Mhc95F is expressed in migrating follicle cells, including the border cells, which migrate between the nurse cells to lie at the anterior of the oocyte; the columnar cells that migrate over the oocyte; the centripe...

متن کامل

Drak Is Required for Actomyosin Organization During Drosophila Cellularization

The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 129  شماره 

صفحات  -

تاریخ انتشار 1995